您的当前位置:首页正文

整式的乘法教案

2023-09-27 来源:V品旅游网

  第一课时

  教学目标:

  1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。

  2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。

  教学重点:

  整式的乘法运算。

  教学难点:

  推测整式乘法的运算法则。

  教学过程:

  一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的乘法法则。

  跟着用乘法分配律来验证。

  单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。

  二、例题讲解:

  例2:计算(1)2ab(5ab2+3a2b);

  (2)解略。

  三、巩固练习:

  1、判断题:(1)3a3·5a3=15a3( )

  (2)( )

  (3)( )

  (4)—x2(2y2—xy)=—2xy2—x3y( )

  2、计算题:

  (1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。

  四、应用题:

  1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?

  五、提高题:

  1、计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。

  2、已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。

  3、已知:2x·(xn+2)=2xn+1—4,求x的值。

  4、若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。

  小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:

  第二课时

  教学目标:

  1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。

  2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。

  教学重点:

  多项式乘法的运算。

  教学难点:

  探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题

  教学过程:

  一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。

  二、巩固练习:1、计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。

  三、提高练习:

  1、若;则m=_____,n=________

  2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a

  3、已知,则a=______,b=______。

  4、若成立,则X为__________。

  5、计算:+2。

  6、某零件如图示,求图中阴影部分的面积S。

  7、在与的积中不含与项,求P、q的值。

  一、小结:

  本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。

  六、作业:第28页习题 1、2

因篇幅问题不能全部显示,请点此查看更多更全内容

Top